An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR
نویسندگان
چکیده
Many Proteobacteria govern responses to changes in cell density by using acyl-homoserine lactone (AHL) quorum-sensing (QS) signaling. Similar to the LuxI-LuxR system described in Vibrio fischeri, a minimal AHL QS circuit comprises a pair of genes, a luxI-type synthase gene encoding an enzyme that synthesizes an AHL and a luxR-type AHL-responsive transcription regulator gene. In most bacteria that utilize AHL QS, cognate luxI and luxR homologs are found in proximity to each other on the chromosome. However, a number of recent reports have identified luxR homologs that are not linked to luxI homologs; in some cases luxR homologs have been identified in bacteria that have no luxI homologs. A luxR homolog without a linked luxI homologs is termed an orphan or solo. One of the first reports of an orphan was on QscR in Pseudomonas aeruginosa. The qscR gene was revealed by whole genome sequencing and has been studied in some detail. P. aeruginosa encodes two AHL synthases and three AHL responsive receptors, LasI-LasR form a cognate synthase-receptor pair as do RhlI-RhlR. QscR lacks a linked synthase and responds to the LasI-generated AHL. QS regulation of gene expression in P. aeruginosa employs multiple signals and occurs in the context of other interconnected regulatory circuits that control diverse physiological functions. QscR affects virulence of P. aeruginosa, and although it shows sensitivity to the LasI-generated AHL, 3-oxo-dodecanoylhomoserine lactone, it's specificity is relaxed compared to LasR and can respond equally well to several AHLs. QscR controls a set of genes that overlaps the set regulated by LasR. QscR is comparatively easy to purify and study in vitro, and has become a model for understanding the biochemistry of LuxR homologs. In fact there is a crystal structure of QscR bound to the LasI-generated AHL. Here, we review the current state of research concerning QscR and highlight recent advances in our understanding of its structure and biochemistry.
منابع مشابه
Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR.
The Pseudomonas aeruginosa transcription factor QscR responds to a variety of fatty acyl-homoserine lactones (HSLs), including N-3-oxododecanoyl-HSL (3OC12-HSL), which is produced and detected by the P. aeruginosa quorum-sensing circuit LasI and LasR. As is true for LasR and many other acyl-HSL-dependent transcription factors, production of soluble QscR in sufficient amounts for purification re...
متن کاملThe QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity.
Quorum sensing is a process by which bacteria release and subsequently respond to signal molecules, as a mechanism for sensing population density (4). Acylated homoserine lactones (AHLs) are well-studied quorum-sensing signals among proteobacteria and are most commonly synthesized by enzymes of the LuxI family (3). AHLs are usually recognized by members of the LuxR family of transcription facto...
متن کاملQscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa.
The opportunistic pathogenic bacterium Pseudomonas aeruginosa uses quorum-sensing signaling systems as global regulators of virulence genes. There are two quorum-sensing signal receptor and signal generator pairs, LasR-LasI and RhlR-RhlI. The recently completed P. aeruginosa genome-sequencing project revealed a gene coding for a homolog of the signal receptors, LasR and RhlR. Here we describe a...
متن کاملThe Pseudomonas aeruginosa global regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene expression.
The opportunistic pathogen Pseudomonas aeruginosa has at least three quorum-sensing (QS) systems, including the acyl-homoserine lactone (acyl-HSL)-mediated las and rhl systems, as well as the 2-alkyl-4(1H)-quinolone (AHQ) signal-based system. A group of key regulators of these QS systems have been identified, such as qteE, vqsM, vqsR, and vfr. However, the underlying regulatory mechanisms of th...
متن کاملActivation of Multiple Transcriptional Regulators by Growth Restriction in Pseudomonas aeruginosa
Growth restriction by antibiotics is a common feature that pathogenic bacteria must overcome for survival. The struggle of bacteria to escape from growth restriction eventually results in development of antibiotic-resistance through the expression of a set of genes. Here we found that some physiologically important transcriptional regulators of Pseudomonas aeruginosa including QscR, a quorum se...
متن کامل